Hodge integrals and Gromov-Witten theory

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gromov-witten Potential of a Point, Hurwitz Numbers, and Hodge Integrals

Hurwitz numbers, which count certain covers of the projective line (or, equivalently, factorizations of permutations into transpositions), have been extensively studied for over a century. The Gromov-Witten potential F of a point, the generating series for Hodge integrals on the moduli space of curves, has been a central object of study in Gromov-Witten theory. We define a slightly enriched Gro...

متن کامل

Gromov-witten Theory Learning Seminar

Today, Jonathan spoke, delivering an overview of Gromov-Witten theory and how associativity of quantum cohomology leads to applications in enumerative geometry. Today we always work over C, and follow Fulton-Pandharipande’s notes [FP96]. Classically, if X is a nonsingular projective variety and β ∈ H2(X;Z), we want to know how many algebraic curves in X represent the class β. This relates to ve...

متن کامل

A Relative Riemann-hurwitz Theorem, the Hurwitz-hodge Bundle, and Orbifold Gromov-witten Theory

We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible Gcovers. This formula can be interpreted as a representation-ring-valued relative Riemann-Hurwitz formula for fam...

متن کامل

Gromov-Witten Theory and Threshold Corrections

We present an overview of Gromov-Witten theory and its links with string theory compactifications, focussing on the GW potential as the generating function for topological string amplitudes at genus g. Restricting to CalabiYau target spaces, we give a complete derivation of the GW potential, discuss problems of multicovers and the infinite product expression. We explain the link with counting i...

متن کامل

On Gromov-witten Theory of Root Gerbes

This research announcement discusses our results on Gromov-Witten theory of root gerbes. A complete calculation of genus 0 Gromov-Witten theory of μr-root gerbes over a smooth base scheme is obtained by a direct analysis of virtual fundamental classes. Our result verifies the genus 0 part of the so-called decomposition conjecture which compares Gromov-Witten theory of étale gerbes with that of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2000

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s002229900028